ORBITAL SATELLITE CONSTELLATIONS AND THE GROWING THREAT OF KESSLER SYNDROME IN THE LOWER EARTH ORBIT
PDF

Keywords

Kessler syndrome
satellite constellations
space debris
space debris models
space security

Abstract

The paper discusses the problem of the growing threat of orbital collisions – the Kessler syndrome in the Earth’s lower orbit caused by orbital satellite constellations developed to provide broadband internet. It provides a theoretical context for the main argument by presenting the current data related to space debris in orbit, the concept of the Kessler syndrome and its application to orbital objects, the legal framework pertaining to the issue, mitigation programs and plans, and new orbital satellites constellations under development and how they contribute to the Kessler syndrome threat.

The main contribution of the paper is the carried out argument that the lack of a global legal system regulating the use of the Earth’s orbit is a factor that strengthens the threat.

PDF

References

[1] Adilov, N., et al. (2018). An Economic ‘‘Kessler Syndrome’’: A Dynamic Model of Earth Orbit Debris. Economic Letters, 166, 79-82. DOI: https://doi.org/10.1016/j.econlet.2018.02.025
[2] Bernat, P. (2018). Kosmiczne szczątki: przyczyny, zagrożenia, plany naprawcze. In A. Radomyski et al. (Eds.), Wyzwania i rozwój obrony powietrznej Rzeczypospolitej Polskiej: Obronność RP XXI wieku (433-442). Dęblin: Lotnicza Akademia Wojskowa.
[3] Bernat, P. (2019). The Inevitability of Militarization of Outer Space. Safety & Defense, 5(1), 49-54. DOI: https://doi.org/10.37105/sd.43
[4] Boothby, B. (2017). Space Weapons and the Law. International Law Studies, 93, pp. 179-214.
[5] Bourbonniere, M., and Lee, R.J. (2008). Legality of the Deployment of Conventional Weapons in Earth Orbit: Balancing Space Law and the Law of Armed Conflict. European Journal Of International Law, 18(5), pp. 881-82.
[6] Cao, S. (2020). The Race Between SpaceX’s Starlink and Amazon Is Heating Up. Observer, 20.11.2020. Retrieved from https://observer.com/2020/11/spacex-starlink-amazon-kuiper-fcc-orbit-altitude-rights/, 04.12.2020.
[7] Drmola, J., and Hubik, T. (2018). Kessler Syndrome: System Dynamics Model. Space Policy, 44-45. DOI: 10.1016/j.spacepol.2018.03.003.
[8] ESA (2017). Space Operations. Space Debris: the ESA Approach. Retrieved from https://esamultimedia.esa.int/multimedia/publications/BR-336/offline/download.pdf, 05.12.2020.
[9] ESA (2020). Space Debris by the Numbers. Retrieved from https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers, 05.12.2020.
[10] ESA (2020a). Analysis and Prediction. Retrieved from https://www.esa.int/Safety_Security/Space_Debris/Analysis_and_prediction, 03.12.2020.
[11] ESA (2020b). Space Debris User Portal. Retrieved from https://sdup.esoc.esa.int/, 28.11.2020.
[12] Henry, C. (2019a). SpaceX submits paperwork for 30,000 more Starlink satellites. SpaceNews, 15.10.2019. Retrieved from https://spacenews.com/spacex-submits-paperwork-for-30000-more-starlink-satellites/, 06.12.2020.
[13] Henry, C. (2019b). Amazon lays out constellation service goals, deployment and deorbit plans to FCC. SpaceNews, 08.07.2019. Retrieved from https://spacenews.com/amazon-lays-out-constellation-service-goals-deployment-and-deorbit-plans-to-fcc/, 07.12.2020.
[14] Ibrahim, R. (2020). Space Debris: Space Environmental Statistics. Orbofleet. Retrieved from https://www.orbofleet.com/space-debris-space-environment-statistics/, 03.12.2020.
[15] Jewett, R. (2020). 2020: A Year of Dramatic Change in the Satellite Industry. Via Satellite. Retrieved from http://interactive.satellitetoday.com/via/december-2020/2020-a-year-of-dramatic-change-in-the-satellite-industry/, 08.12.2020.
[16] Jones, H.W. (2018). The Recent Large Reduction in Space Launch Cost. Proceedings of the 48th International Conference on Environmental Systems, Albuquerque, New Mexico. Retrieved from https://ttu-ir.tdl.org/bitstream/handle/2346/74082/ICES_2018_81.pdf?sequence=1&isAllowed=y, 10.12.2020.
[17] Kessler, D.J. et al. (2010). The Kessler Syndrome: Implications to Future Space operations. Advances in the Astronautical Sciences, 137, 47-62.
[18] Kessler, D.J., and Anz-Meador, P.D. (2001). Critical Number of Spacecraft in Low Earth Orbit: Using Satellite Fragmentation Data to Evaluate the Stability of the Orbital Debris Environment. Proceedings of the Third European Conference on Space Debris, 19 - 21 March 2001, Darmstadt, Germany, pp. 265-272. Retrieved from http://adsabs.harvard.edu/full/2001ESASP.473..265K, 06.12.2020.
[19] Kessler, D.J., and Cour-Palais, B.G. (1978). Collision Frequency of Artificial Satellites: The Creation of a Debris Belt. Journal of Geophysical Research, 83(A6), 2637-2646.
[20] NASA (2008). Handbook for Limiting Orbital Debris. Retrieved from https://explorers.larc.nasa.gov/APMIDEX2016/MO/pdf_files/NHBK871914.pdf, 05.12.2020.
[21] NASA (2012). SpaceX, NASA Target Oct. 7 Launch For Resupply Mission To Space Station. Retrieved from https://www.nasa.gov/mission_pages/station/main/spacex-crs1-target.html, 06.12.2020.
[22] NASA (2019). ORDEM 3.1: OD Engineering Model. Retrieved from https://orbitaldebris.jsc.nasa.gov/modeling/ordem-3.1.html, 28.11.2020.
[23] NASA (2020). LEGEND: 3D/OD Evolutionary Model. Retrieved from https://orbitaldebris.jsc.nasa.gov/modeling/legend.html, 28.11.2020.
[24] NATO (2020). Science & Technology Trends 2020-2040: Exploring the S&T Edge. Retrieved from https://www.nato.int/nato_static_fl2014/assets/pdf/2020/4/pdf/190422-ST_Tech_Trends_Report_2020-2040.pdf, 06.12.2020.
[25] Pyle, R. (2019). Space 2.0: How Private Spaceflight, a Resurgent of NASA, and International Partners Are Creating a New Space Age. Dallas: National Space Society.
[26] SpaceX (2020). Falcon 9: First Orbital Class Rocket Capable of Reflight. Retrieved from https://www.spacex.com/vehicles/falcon-9/, 10.12.2020.
[27] Starlink (2020). Starlink. Retrieved from https://www.starlink.com/, 08.12.2020.
[28] UN (1999). Technical Report of Space Debris. New York: United Nations.
[29] UNOOSA (1967). Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies. Retrieved from https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/outerspacetreaty.html 28.11.2020.
[30] UNOOSA (2010). Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space. Retrieved from https://www.unoosa.org/pdf/publications/st_space_49E.pdf, 02.12.2020.
[31] UNRCPD (1977). Weapons of Mass Destruction. Retrieved from https://unrcpd.org/wmd/, 28.11.2020.
[32] Virgili, B., et al. (2016). Risk to Space Sustainability from Large Constellations of Satellites. Acta Astronautica, 126, 154-162. DOI: 10.1016/j.actaastro.2016.03.034.
[33] Weitering, H. (2020). Space calendar 2020: Rocket launches, sky events, missions & more! Space.com, 11.12.2020. Retrieved from https://www.space.com/32286-space-calendar.html, 11.12.2020.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.